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Abstract

A method for the determination of sufficient conditions for the
almost sure stability of some continuous systems of physical interest
is presented. The motions of the systems under consideration are
aséumed to be described by linear partial differential equations with
time-varying coefficients of a random nature. The method presented,
which is of a rather general form; is restricted for the sake of
simplicity and ease of computations and is applied to problems of
elastic columns and plates, a cantilever beam subjected to a random
follower force, and a string excited by a pressure-type random force.
The emphasis both in the computations and in the nature of the method
is on simplicity of computations and in the determination of stability

conditions with a minimum of assumptions.



Introduction

The stability of systems described by linear ordinary differ-
ential equations with stochastic coefficients has been the object
of considerable recent interest; in particular, the works of Kozin
[1]2, Caughey and Gray [2], Ariaratnam [3], Lepore and Sheh [U4] and
Infante [5] have discussed problems of this nature. - The analogous
problems for partial differential equations, which naturally arise
in the study of the stability of structures subjected to random loads,
have usually been reduced to problems of ordinary differential equa-
tions by the use of a modal approach in which the amplitude of each
mode is governed by an ordinary differential gquation and each
amplitude is investigated separately [2], [31, [h]. However, the
great majority of physically interesting systems are not amenable to
such a modal analysis because of the presence of the randomly varying
coefficlents in the describing partial differential equations. Hence,
it is desirable to obtain a method which can be applied directly to
these partial differential equations. This is the object of this
paper.

It should be pointed out that Wang [6] has considered a similar
problem, but his approach differs fundamentally from the one described
here; also, his results were obtained by using fundemental properties
of semigroups together with the Gronwall inequality, and in the case
of ordinary differential equations results obtained in this manner

are known to be weak,

Eﬁémbers in brackets designate References at the end of the paper.



The continuous systems considered in this work are governed by
linear partial differential equations with random coefficienys; these
coefficients are assumed to be stationary and ergodic, in the
stochastic case, It is desired to obtain sufficient conditions for
the almost sure asymptotic stability of the equilibrium state of the
system, The procedure used for this purpose is an extension of the
method described in [5] which involves a Liapunov type of approach.
The application of this technique to several problems of physical
interest, which yield results believed to be new, shows that its
simplicity and ease of computation maske it an attractive method
especially since few assumptions on the nature of the random dis-
turbances are required,

It should be emphasized that thé gpecific techniques used are
not necessarily optimal, and that the results can probably be

significantly improved, Further work toward this goal seems appro-

priate,.



Statement of the Problem

Consider a continuous system which occupies a bounded domain
R in one-, two-, or three-dimensional spé.ce {‘_)_c_} , and let C de-
note the boundary of R. Designate by w(x,t) the displacement of
the system from an equilibrium state which, for simplicity, is taken
as w(x,t) = 0; t here represents the time (t z 0) end it is

assumed that this displacement is governed by a linear partial dif-

ferential equation of the form

32w o o
.St?+2§3€+.cfw+/(t)W=O,§eR,tgo, (1)

with homogeneous time-independent boundary conditions of the form

Pw =0, x¢eC, (2)
and initial conditions
W‘(—}E’O) = WO(-}S), —é-f—(-l}é%-o—)— = Vo(zf.-), -}E € R. (5)

In this formulation %, ¥ and J(t) are linear spatial
differential operators and § 1is a positive constant. In the equa-
tion of mc*“on, Eq. (1) , the spatigl ope:;a,tor terms have been
separated, without loss of generality, into the two parts < and

I(t), where Z(t) includes all the terms with time-varying



coefficients and those terms which are not self-adjoint, whereas <
contains only self-adjoint terms with constant coefficien_ts. Hence,

whenever w, and w, satisfy the boundary conditions (2),

2
[ wl.gwgdgf = f szwldj_g. (%)

The operator _Z(t) has therefore the form

Ty = e, Tr L 1,05, (5)
I=1 I=N+1
where the _71 are time-invariant l-inear‘operators, the c¢. are
constants and the functions fi(t) are measurable, strictly
stationary functions which satisfy an ergodic property ensuring the
equality of time and ensemble averages., Under these conditions,
if G 1is a measurable, integrable function defined on the f‘i(t)

‘then the 1imit

t
B(G[r, (+)]} = lim & [ G[f,(v)]ar 6)
@]

t 2o

exists with probability one, It is also assumed that, with the
notation v = %WE , the problem defined by Egs. (1), (2) is well

posed with respect to the function space whose norm is

o[w,v] = ([ [w&w + w2 + v2]d.>_{_}l/2‘, (N
R



It is clear that the formulation of the problem, as well as
the choice of the space defined by (7), are motivated by the nature
of the physical problems we wish to consider. Equations (1), (2)
generalize the partial differential eqﬁations of elastic structures
and Eq. (7) is intimately related to the concept of energy for such
structures.

It is desired to derive sufficient conditions for the almost
sure asymptotic stability in the large of the equilibrium state
w(x,t) = 0. That is, conditions on the fi(t) are sought such
that the solutions w(E;t) of (1), (2) with arbitrary initial con-

ditions (3) will satisfy

lim p[w(x,t), v(x,£)] = O (8)
t >
with probability one. It is evident that if the functions fi(t)
are deterministic and satisfy condition (6) then the sought con-

ditions will imply asymptotic stability in the sense of Liapunov.



Stability Analysis

Consider the functional

(9)

Viw,v] = [ [w&r+ V2 & b 4 cwz]dz,
: R
where b and c¢ are parameters depending on ¢, to be subsequently
determined. Tt is noted that ‘V[0,0] = 0, and it is assumed that for
all w satisfying the boundary conditions (2)
Jwax z k [ ngf. (10)
R R

for some constant k =z 0. Hence

Viw,v] 2z [ [v2 + bvw + (k+c)w2]q§,
R

(11)
and iIf Db - and c¢ are chosen so that
2
b £ b(kte) - B (12)
for some >0 then V 1is positive'definite and
2
V[w,v] z Bp [w,V] (13)

for some positive constant B.

Let us consider the time rate of change of the functional (9),

which is denoted by V[w,v],



Vw,vl=[[v&v+ wSLv +.2v-gvE £ ove 4 bw%ve% 2ewv]dx, (1h)
R - ~

Substitution in this equation of % from Eq. (1) yields the time

‘rate of change of the functional (9) along the solutions of (1) as

\.I[W,v,t] = [ (v&w + v+ bv> + 2ewv +
R (15)

4 (2v + bw)[-2tv - L - F(t)w]}ax.

The use of (4) with w) =W and w,=v allows for the simplifica-

tion of this expression to

‘.I[w,v,t] = -f {(owL + (ltg.b)v2 + 2(bt-c)vw +
. R (16)
+ (2v+bw) I(t)w)dx.

For w and v not both zero, consider the ratio VU with ¥
given by Eq. (16) and V by Eq. (9). Let a scalar function

)\M(t) be such that

V[w,v,t]

Vﬁi;;’]—— = ?\M(t) (17)

for all w and v satisfying the boundary conditions (2). Inte-
gration of this expression on [0,t] yields

1 t
tfx [ A (7)as]

v(t) = v(0)e ° , (18)



where V(t) denotes V[w(x,t), v(x,%)] and V(0) = V[WO(E), VOQ§)].
Inequality (18) provides an exponential bound on the motlon of the

system at any time t in terms of the quantity f AM(T)dT

t .
% 1) G[fi(T)]dT. An example of this type of result, applied to a
e]

specific problem, is given in [T]. In the present work, however,
let us restrict ourselves to the discussion of the system behavior
as t —> » and we force the restrictions on the fi(t) for asymptotic

stability to the form of conditions on expectations.

From Equations (6), (13) and (18) it is clear that if

E(Q,(t)} = -¢ (19)

for some constant € > 0, then with probability one it will follow
that V(t) -0 and hence p[w(x,t), v(x,t)] -0 as t - o, Hence,
. (19) represents a sufficient condition for the almost sure
asymptotlc stability in the large of w(x t) =
The applipation of this general method to a particular ex-
ample involves the following procedure.: First of ail, a constant

k that satisfies Eq. (10) must be found; then the function }M(t)

of Eq. (17) is determined and the stability conditions expressed by
the inequality (19) are forced in the form of the desired expectations,
~ such as E{]fi(t)]} or E{fi(t)}; finally, the constants b and ¢
which optimize these conditions are determined subject to theléon-

straint expressed by Eq. (12).



It should be noted that the method is very general, except for‘
the choice of the specific functional (9) which has been selected,
The reason for this particular choice rests on the fact that ex-
perience has indicated this functional to yield good results with
only a moderate amount of computations., The selection of the form
of the functional which yields optimal results is a further area

where research seems indicated, although not too promising,
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Some Examples

The procedure outlined above will now be applied to some
linear continuous systems subjected to random loads. Two
observations are important regarding these examples! i) all the
examples are of a nonconservative nature, even if the random func-
tions were replaced by constants and, ii) in none of the examples
are the equations of mofion separable, hence a modal stability
analysis is not feasible,

In the first example the computations and procedures are
carried out in detail; in the other two examples, for economy of
space, the computations are simply indiéated but the missing steps

can be easily filled in by the interested reader.

Example 1, Consider the partial differential equation of

motion

Ly 2 :
.g_ta.ven zg%+§+p(t)§+u(t)%= 0,0<x<l, tz0 ()

where w = w(x,t) and x is one-dimensional, and the boundary

conditions

2 2
w(0,t) = .a_ﬁfé%aﬂ = w(l,t) = 9_‘1%2"31 -0, tzo. (21)

It is of interest to note that if wu(t) = U = constent then Egs. (20),

(21) describe the motion of a "two-dimensional” elastic plate in a



1l

supersonic airstream of velocity U and subjected to uniform
normal forces p(t) at the simply supported edges x = 0 and
x = 1, a configuration illustrated in Figure 1(a). In accordance
with piston theory, the terms 2% 4+ U % represent the aero-
dynamic forces due to the airstream, If wu(t) =0, then Egs. (20)
and (21) represent a simply supported elastic column under an axial
load p(t) with £ as the coefficient of viscous damping,
Figure 1(b), 1In this Jatter case, the problem is separable and
has been discussed in detail in [7].
For Egs. (20) and (21) it is clear that
Ly = Bhw T(t)w = (t) 2 + u(t)
=W = g{-q: P p 32 5=

2 2 5
V[w,v] = f [( T+ v+ bvw + cw ]dx

(22)

where integration by parts has been used. Application of straight-

forward inequalities or, even more fundamentally, of a variational

technique with Lagrange multipliers yields the value of k = ﬂy

satisfying Eq. (10) and a function AM(t) satisfying Eq. (17).
Let us illustrate this procedure in the determination of %M(t).

In this case, consider the functional

1 32,2
A\ ..f {(7\+b)( ) + (Mg -D)VE + (Nb+Zbt-2c)vw +
5 (23)

+ p(t)(2v+bw_)-§;—g + AW + @(t)v%}dx.
o



12
The variation of this functional is written in the form

1
-2f (o(w,v,t)dv + ¥(w,v,t)ow}dx, (24)
0

1

8 (V-2\V)
where

o(w,v,t) = (Mhe-b)v + %(Ab+2bg-2c)w +

v P
+ u(t)ax— + P(t)g{"é ()
and

}é()\b+2bg_2c)v - u(t)% (t) 2 +

2 3% (26)
+ Aew + bp(t) T+ (O b)
ax

¥ (w,v, %)

1l

Forcing the variation (24) to vanish yields the two equations ¢ = O
and V¥V = 0, whose linearity allows for.the elimination of one of
the unknowns, say v, yilelding the fourth order equation in w
h 32
[ (WD) (Mhg-b) - p (t)] AL [(2c+28b -D )p(t) +u (t)]ax

(an)
+ [he(MbE-D) - (bt-c + 22w = o,

This ordinary differential equation, for p(t) and u(t) fixed
quantities, with the boundary conditions (21) yields the eigen-

functions w(x)=sin nTx and the eigenvalues A = Rn(t) of the form
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nhwypg(t) + ohp(t) + B +_n2ﬁ2u2(t)

- ‘
nl,"rr"'L + ¢ - 'b?/l@ (28)

n= 1,2

9 po00egy

where o = n2n2(2c+2§b4b2), B, = nuwy(b-2§)2-+ 2t(2t-b)e + c2.
Setting %M(t) = max An(t) yields the desired function., This
n=1,2,...

maximization is somewhat complicated, and for computational
simplicity it is desirgble that the maximum occur for a Tixed value
of n, independently of the values of u(t) and p(t). This is

easily accomplished by letting o = 0, i.e. forcing

¢ = b(b-2¢) /2 (29)

it is noted that the functional V[w,v] is such that this simplify-
ing condition can be satisfied along with condition (12), which in

this case takes the form
be = h(qrh +c) - B, (30)
by an appropriate choice of the parameters b and c,

With the use of condition (29) it is clear that the maximum

of (28) occurs for n=1 if 0=b = h&, and therefore



1k

) 22
t) = -2¢ Tp () rTu(t), po 2, = Db s be, 1
A (F) +/7T4_§b+ 7 + (b-28)7, 0= b s he,  (31)

Hence, the stability condition (19) becomes, in this case,

T2 (6) * Tous (k)

n 2 + (b.2g)2 =2t - e, (32)
T -tb+ Db /4

Application of Schwarz's inequality then immediately yilelds
2.2
e (8)) + B (8)) s [ue® - (b-2§)2][7ru -t B U] - €, (39)

and the optimal choice for the parameter b consistent with (30) and

with 0 = b = he is immediately found as

‘ 2t for ¢ = 7T2/'\/2_
b= l . (31)

2¢ + /V2(2g2 - Tru) for ¢ 1r2/'\/é-

v

Hence, with this value of b, the stability condition becomes

. L s hg2(1 - gz/wu) - tsT /2
E(p (t)} + —E{u ()} = : ), . (35)
" T - € & 7r2/4/5

v

Therefore, if p(t) ‘and u(t) are such that Eq. (35) is satisfied
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then the system governed by Egs. (20) and (21) is almost surely
asymptotically stable, the sfability results given by Eq. (35) are
depicted in graphical -form in Figure 2,

It should be noted that the stability criterion (35) is
applicable to every set of functions p(t) and u(t) for which
E{pa(t)} and E{ug(t)} are defined, Hence, if we consider the
special case p(t) = 13 =.constant and u(t) = O which describes
the case of the column in Figure 1(b) under a constant load P, We
note that the buckling load is then given by P, = Wg for all ¢,
therefore, if E{pa(t)} > ﬂy we are assured that there exists at
least one function p(t) in this class that produces instability,
and hence ﬂy is an upper bound for the stability region of the |
Type sho;ﬁ in Figure 2, This remark shows that the result obtained,
which is only a sufficient condition for stability, ig relatively
sharp.

Stability criteria in terms of the expectations E{lﬁ(t)[] and
E(|u(t)]} are also easily obtained from Eq. (32). Since E{|wpu|} s
E{|v]|} + E{|p|} and ¢4§—= |v], a sufficient condition for (32) to

hold is

sz{lp(t)[} + mE{|u(t)]} = (nglb_2§|)¢/;p - tb + bg/h - e. (36)

The optimal choice of b for this inequality is given by
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2¢ for & = .967T2

(56 + N9t _ 8r)/2 for t 3 .o6r2

b = (37

which yields the stability domain depicted in Figure 3.

Example 2, As a second example, let us consider the stability
of a cantilevered column subjected at its free end to a random
follower force, as indicated in Figure 4, Viscous damping is
assumed, and therefore the equation of motion for the lateral dis-

placement w(x,t) is given by

5 i 2
-g—t%+2&%+-§§+p(t)%c%=o, 0<x<1l, tz0, (38)

with boundary conditions

o (0,t) _ agw(l)t) _ a5w<1,t) -0
ax - -

w(0,t) = ax2 EKB

Ttz O (39)
The same procedure as the one given in detail for Example 1

is followed for the determination of %M(t). Forcing the stability

conditions to be in the form of restrictions on E{pg(t)}, the

optimal vaive of b is found as
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iIA

2t for E=sm/h
b= : (40)

|2t + /\/4§2 - wh/h for &> 7r2/u

leading to the stability criterion

LE2 _ 30t /n — if &= We/h
E(p (t)} s . : (41)
T /8 - € if gz Wz/h

The stability region defined by these equationé is depicted in
Figure 5,

It is of interest to recall the stability criterion for
the case of a constant follower force, p(t) = D = constant, Fof
¢ = 0, Beck [8] has shown that the column is stable (but not
asymptotically stable) if and only if

T s 2,03 - (42)
and it is known that for ¢ > O +this condition is sufficient for
asymptotic stability [9]. A comparison of the result obtained
above with this condition suggests that the stability criterion

(k1) is probably not a very sharp one, and that it can probably be

improved, However restrictive this condition, it must be pointed
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out that it was obtained in a simple and straightforward manner; it
is believed to be the first stability criterion obtained for a

cantilever subjected to a time-dependent follower force.

Example 3. As a final example, consider the equation

2 2
%t%+2§%-%c.§+f(t)g’z=o, 0<x<1l tzo0, (43)

with the associated boundary conditions
w(0,t) = w(1,t) =0, tz 0. (4h)

Here w(x,t) represents the lateral displacement of a string
stretched between fixed ends and subjected to a transverse load

f(t)gg and damping force 2&%% . The functional V[w,v] then has

the form

1
Viw,v] = [ [(-g;—f)2 + v2 + bvw + cw2]dx. (45)

0o

Following again the procedure of Example 1 yields the optimal values

of the parameters b and c¢ %o be

b=——2-———7, c =0, ()-l-6)

upon which the stability criterion in terms of E{fe(t)} is obtained
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immediately as

2 lwrzg2 :
E{f (t)} £ —y=—p - €, - (B
T + ¢

a criterion depicted graphically in Figure 6.



Conciluding Remarks

As the three above examples illustrate, the method suggested
in this paper is a simplé, straightforward tool for the determination
of sufficient;conditions for the almost sure asymptotic stability of
some continuous systems subjected to random excitation. This method
is not an approximate one and it does not require that the equations
of motion be separable, as the modal approach demands. Furthermore,
the techniques used are relatively independent of the non-gelf-
adjointness of the equations and the stability criteria obtained can
be put in the form of simple equations involving the expectations of
the disturbances.

The computations required are rather elementary, involving only
the use of some rather well-known inequalities or, at most, the solu-
tion of simple eigenvalue problems.

The stability criteria obtained are only sufficient, as is to
be expected, the choice of a definite form for the functional V
allows for the ease of the computations but is, on the other hand, a
restriction which may cause the criteria obtained to be very con-
»servative, The optimal choice of this functional remains an open

problem,
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